New serial data standards, expanding networks and ubiquitous computing continually redefine the cutting-edge of technology. The design engineer is challenged to economize without sacrificing performance.

The DTG5000 Series combines the power of a data generator with the capabilities of a pulse generator in a versatile, bench-top form factor, shortening the duration of complex test procedures and simplifying the generation of low-jitter, high-accuracy clock signals, parallel or serial data across multiple channels. Its modular platform allows you to easily configure the performance of the instrument to your existing and emerging needs to minimize equipment costs.

Three mainframes and five plug-in output modules combine to cover a range of applications from legacy devices to the latest technologies. In addition, eight low-current, independently-controlled DC outputs can substitute for external power supplies. Each mainframe incorporates a full compliment of auxiliary input and output channels to easily integrate with other instruments, such as oscilloscopes and logic analyzers, to create a flexible and powerful lab.

Features & Benefits

- Versatile Platform Combines Features of Data Generator, Pulse Generator and DC Source
- Up to 3.35 Gb/s Data Rate
- From 1 to 96 Data Channels (Master/Slave)
- Class-leading Delay Resolution of 0.2 ps (DTG5274/DTG5334), 1 ps (DTG5078), Up to 600 ns of Total Delay
- Modular Architecture Helps to Protect Your Investment and Allows the Instrument to Expand with Your Growing Needs
- Advanced Control Over Signal Parameters to Meet Most Current Testing Needs, Including Stressed Eye Generation
 - External Jitter Injection (DTGM31, DTGM32 Modules)
 - Level Control with 5 mV Resolution
- Easy to Use and Learn Shortens Time to Test
 - Easily Configure with Plug-in Modules
 - Intuitive Windows User Interface
 - Bench Top Form Factor
 - Integrated PC Supports Network Integration and Built-in CD-ROM, LAN, Floppy Drive, USB Ports
- Up to 64 Mb Pattern Depth per Channel for Complex Data Patterns

Applications

- Semiconductor Device Functional Test and Characterization
 - Support for Semiconductor Technologies from TTL to LVDS
 - Initial Verification and Debugging, Comprehensive Characterization, Manufacturing and Quality Control
- Compliance and Interoperability Testing to Emerging Standards
 - PCI-Express Gen1/2.5 Gbps
 - Serial ATA Gen1/2/3 Gbps
 - InfiniBand 2.5 Gbps
 - XAUI: 3.125 Gbps
 - HDMI: Version 1.3/DVI
- Magnetic and Optical Storage Design
 - Research, Development and Test of Next-generation Devices (HDD, DC/DVD, Blue-ray)
- Data Conversion Device Design
 - Characterization and Test of Next-generation D/A Convertors
- Imaging Sensor Device Design
 - Characterization and Functional Testing of Next-generation D/A Convertors
- Jitter Transfer and Jitter Tolerance Testing
Data Timing Generator
▶ DTG5078 • DTG5274 • DTG5334

Characteristics

Mainframe Characteristics

Basic Features

Number of Slots for Output Modules –

Master-Slave Capabilities –

- DTG5078: Up to three DTG5078 mainframes can be connected in Master-Slave configuration.
- DTG5274: Up to two DTG5274 mainframes can be connected in Master-Slave configuration.
- DTG5334: Up to two DTG5334 mainframes can be connected in Master-Slave configuration.

Operating Modes –

- Pulse Generator Mode (slots A to D only).
- Data Generator Mode.

Output Patterns –

- NRZ, RZ, R1, Pulse patterns (DTG5078/5274/5334: Slot A-D; DTG5078 Slot E-H, NRZ only).

Timing Parameters

Data Rate Range –

- DTG5078: NRZ: 50 Kb/s to 750 Mb/s.
- RZ, R1, Pulse Mode: 50 Kb/s to 375 Mb/s.
- DTG5274: NRZ: 50 Kb/s to 2.7 Gb/s.
- RZ, R1, Pulse Mode: 50 Kb/s to 1.35 Gb/s.
- DTG5334: NRZ: 50 Kb/s to 3.35 Gb/s (settable to 3.4 Gb/s).
- RZ, R1, Pulse Mode: 50 Kb/s to 1.675 Gb/s (settable to 1.7 Gb/s).

Data Rate (setting) Resolution –

- Internal Clock: 8 digits.
- External Clock: 4 digits.
- External Phase Lock In: 4 digits.

Output Timing Controls

Delay Range –

- PG Mode: 0 to 3 µs.
- DG Mode:
 - Long Delay Off: 0 to 5 ns (NRZ, RZ, R1).
 - Long Delay On: NRZ:
 - Period ≥ 2.5 ns: 0 to 300 ns (Hardware sequence) or to 600 ns (Software sequence).
 - Period <2.5 ns: 0 to (200 ns x period) (Software sequence).
 - RZ/R1:
 - Period ≥ 2.5 ns: 0 to 600 ns (Software sequence).
 - Period <2.5 ns: 0 to (200 ns x period) (Software sequence).

Phase Resolution –

- 0.1%.

Semiautomatic Deskew Calibration –

- Range: ±1 ns.
- Resolution:
 - DTG5078: 1 ps.
 - DTG5274/5334: 0.2 ps.

Duty Cycle Adjustment Range –

- 0 to 100% (with 0 delay setting, RZ, R1, Pulse mode only).

Phase Resolution –

- 0.1%.

Pulse Width Maximum Range –

- 290 ps to (period to 290 ps) (RZ, R1, Pulse mode only). (Range also depends on delay settings.)
- 5 ps.

Jitter Performance (output channels)

Clock Pattern (*1010...* clock pattern).

- Random Jitter –
 - DTG5078: <4 ppspk-pk at 750 Mb/s with DTGM21, 0.8 Vpp, delay: 0 ns.
 - DTG5274: <3 ppspk-pk at >2.7 Gb/s with DTGM30, 0.8 Vpp, delay: 0 ns.
 - Data Pattern (PRBS pattern 2^15-1)
 - DTG5078: at 750 Mb/s, <18 ppspk-pk, 0.8 Vpp, delay: 0 ns.
 - DTG5274: at 2.7 Gb/s, <16 ppspk-pk, 0.8 Vpp, delay: 0 ns.

Signal Control Features

Cross-point Adjustment (duty cycle distortion) –

- Range: 50% to 70%.
- Resolution: 1%.
- (Slots A to D, and DTGM30/31/32 used in NRZ mode.)

Jitter Generation –

- Jitter All or Partial Pattern.
- Jitter Profile: Sine, Gaussian Noise, Square, Triangle.
- Jitter Freq./Res.: 0.015 Hz to 1.56 MHz/1 MHz.
- Jitter Amplitude: Up to 16.5 Upp, depending on data rate and jitter frequency.

(Internal Jitter Generation available on Channel A1 only.)
Pulse and Data Features

Pulse Generator (PG) Features (unique to PG mode) –
- Continuous or Burst.
- Burst Count: 1 to 65,536.
- Pulse Rate: Off, 1/1, 1/2, 1/4, 1/8, 1/16.

Data Patterns
- **Pattern Length per Channel (Pattern Memory)** –
 - Minimum:
 - DTG5078: 1 bit (software mode) or 240 bits (hardware mode).
 - DTG5274 / DTG5334: 1 bit (software mode) or 960 bits (hardware mode).
 - Maximum:
 - DTG5078: 8,000,000 bits.
 - DTG5274: 32,000,000 bits (in multiples of four).
 - DTG5334: 64,000,000 bits (in multiples of four).
- **Built-in Data Patterns** –
 - Binary Counter, Johnson Counter, Graycode Counter, Walking Ones, Walking Zeros, Checker Board, User-defined Patterns.
- **Pattern Import Capability** –
 - Type/Tools:
 - Tektronix TLA Data Exchange Format File (*.txt).
 - Tektronix HFS Vector File (ASCII) (*.vca).
 - Tektronix HFS Vector File (binary) (*.vcb).
 - Tektronix AWG2000 Series (*.wfm).
 - Tektronix AWG400s/500s/610/710/710B (*.pat).
 - Tektronix DG2000 Series (*.dat).
 - Medium/Pass:
 - Import data via GPIB, LAN, CD-ROM, floppy drive, USB memory devices.
- **Pattern Copy and Paste Capability** –
 - Copy, paste and rotation between data listing/waveform editor and spreadsheet software (e.g., Excel) via clipboard.

PRBS/PRWS Data Patterns –
- Note: memory supports PRBS/PRWS patterns and user can create errored PRBS, 2^−1, 2^−1, 2^−1, 2^−1, 2^−1, 2^−1, 2^−1, 2^−1, 2^−1, 2^−1, 2^−1.

Sequencer Features
- **Sequence Length** –
 - 1 to 8,000 steps for main sequence.
 - 1 to 256 steps for sub-sequence.
- **Max. Number of Blocks** – 8,000.
- **Max. Number of Sub-sequences** – 50.
- **Repeat Counter** – 1 to 65,536 or infinite.
- **Channel Addition** – AND or XOR (slots A to D only).
 - Note: DTG5078 slots E, F, G, and H do not support the following: RZ, R1, pulse generation modes which includes controls for trail delay/duty cycle/pulse width, channel addition and variable cross-points.

Auxiliary Channels
- **Clock Out**
 - Connector – Complementary output (common offset and ground).
 - DTG5078/DTG5274: SMA rear panel.
 - DTG5334: SMA front panel.
- **Frequency Range** –
 - DTG5078: 50 kHz to 750 MHz.
 - DTG5274: 50 kHz to 2.7 GHz.
 - DTG5334: 50 kHz to 3.35 GHz, settable up to 3.4 GHz.
- **Frequency Resolution** – 8-digit setting resolution.
- **Internal Clock Accuracy** – Within ±1 ppm.
- **Jitter** –
 - DTG5078: <2 ps (typical).
 - DTG5274: <2 ps (typical).
 - DTG5334: <2 ps (typical).
- **Amplitude/Resolution** –
 - DTG5078: 0.03 V (50 Ω) to 1.25 V (10 mV).
 - DTG5274: 0.06 V (50 Ω) to 2.5 V (10 mV).
 - DTG5334: 0.06 V (50 Ω) to 2.5 V (10 mV).
- **Output Voltage Window** –
 - −2 to 2.47 V (50 Ω).
 - −2 to 7 V (1 Ω).
- **Output Current** – ±80 mA.
- **Transition Times** (20% to 80%)
 - DTG5078: <85 ps (Amplitude = 0.1 V, Offset = 0 V) (typical).
 - DTG5274: <70 ps (Amplitude = 0.1 V, Offset = 0 V) (typical).
 - DTG5334: <30 ps (Amplitude = 1 V, Offset = 0 V) (typical).
- **Overshoot** –
 - DTG5078: <10%.
 - DTG5274: <10%.
 - DTG5334: <10%.

Maximum Number of Output Channels

<table>
<thead>
<tr>
<th>Number of Like Mainframes</th>
<th>DTG5078</th>
<th>DTG5274, DTG5334</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>48</td>
</tr>
</tbody>
</table>

*The DTG5078 has a limit to the number of modules that may be installed; the total must be less than 100.
The coefficient for each module is shown below. DTG530: 8, DTG521: 16, DTG531: 33, DTG532: 32.*
Other Output Channels
Auxiliary DC Outputs –
–3 to 5 V/10 mA, Max. current: ±30 mA, 8 independently controlled outputs, Connector: 2 x 8 pin header on front panel.
Sync Out –
CMC (Current Mode Logic), VOH: 0 V, VOL: –0.4 V (50 Ω) (typical), SMA Connector, SE, Front panel, Rise/Fall Time (20 to 80%): 140 ps, Delay to Data Out: –4.5 ns (typical).
10 MHz Reference Out –
1.2 Vpp-sm (50 Ω, AC coupled) (typical), 2.4 Vpp-sm (1 kΩ, AC coupled) (typical), BNC Connector, Rear Panel.

Input Channels
External Clock In –
Input Ranges:
DTG5078: 1 MHz to 750 MHz. SMA Connector, Rear Panel.
DTG5274: 1 MHz to 2.7 GHz. SMA Connector, Rear Panel.
DTG5334: 1 MHz to 3.35 GHz. SMA Connector, Front Panel.
0.4Vpp-sm to 2 Vpp-sm (50 Ω, AC coupled), 50% ±5% duty cycle.
10 MHz Reference In –
Input Ranges:
10 MHz ±0.1 MHz, 0.2Vpp-sm to 3 Vpp-sm (50 Ω, AC coupled), BNC Connector, Rear Panel.
Phase Lock In –
Input Ranges:
1 MHz to 200 MHz, 0.2Vpp-sm to 3 Vpp-sm (50 Ω, AC coupled), BNC Connector, Rear Panel.
Skew Cal In –
Single-ended, ECL (into 50 Ω to –2 V), SMA Connector, Front Panel.
Trigger In –
Input Ranges:
–5 V to 5 V (50 Ω), 0.1 V resolution, –10 V to 10 V (1 kΩ), Min. 0.5 Vpp-sm (50 Ω), 1 Vpp-sm (1 kΩ), Min. 20 ns pulse width, Positive or Negative edge trigger, Delay timing: See manuals, BNC Connector, Front Panel.
Event In –
Input Ranges:
–5 V to 5 V (50 Ω), 0.1 V resolution, –10 V to 10 V (1 kΩ), 0.1 V resolution, Min. 0.5 Vpp-sm (50 Ω), 1 Vpp-sm (1 kΩ), Polarity: Normal or Invert, Delay timing: See manuals, BNC Connector, Front Panel.

Instrument Control/ Data Transfer Ports
GPIB –
GPIB for remote control and data transfer (conforms to IEEE 488.1, compatible with IEEE 488.2 and SSI-1990.1).
LAN –
LAN for PC interface, remote control and data transfer (conforms to IEEE 802.3).

Computer System and Peripherals
CompactPCI based PC, Celeron 566 MHz CPU, Microsoft Windows 2000 Professional, 128 MB SDRAM, 20 GB Hard Drive, 1.44 MB floppy drive on front panel, CD-ROM in rear panel, included USB compact keyboard and mouse.
PC I/O Ports
USB 1.1 compliant ports (3 total, 1 front, 2 rear), PS/2 mouse and keyboard connectors (rear panel), RJ-45 Ethernet connector (rear panel) supports 10Base-T and 100Base-Tx, VGA Out (rear panel), RS-232C.

Physical Characteristics
Display Characteristics –
LCD color display, 800 (H) x 600 (V) (SVGA).

Mechanical Cooling – Required Clearance.
Top and Bottom – 2 cm.
Side – 15 cm.
Rear – 7.5 cm.

Power Supply
Power Source – 100 to 240 VAC, 47 to 63 Hz.
Power Consumption – 560 W.
Safety –
UL61010B-1.
CAN/CSA-22.2 No. 1010.1.
EN61010-1/A2 1995.

Environmental
Temperature
<table>
<thead>
<tr>
<th>Operating</th>
<th>Non-operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10 °C to +40 °C</td>
<td>–20 °C to +60 °C</td>
</tr>
</tbody>
</table>
Humidity
20% to 80% relative humidity with a maximum wet bulb temperature of 29.4 °C, non-condensing
(No diskette in floppy drive): 5% to 90% relative humidity with a maximum wet bulb temperature of 40 °C, non-condensing
Altitude
| 3,000 m (10,000 ft.) | 12,000 m (40,000 ft.) |
Random Vibration
| 2.65 m/s² RMS (0.27 Gpp-pk), from 5 Hz to 500 Hz, 10 minutes | 22.36 m/s² RMS (2.28 Gpp-pk), total from 5 Hz to 500 Hz, 10 minutes each axis 3-axes, 30 minutes total |

Mechanical Cooling – Required Clearance.
Top and Bottom – 2 cm.
Side – 15 cm.
Rear – 7.5 cm.
Power Supply
Power Source – 100 to 240 VAC, 47 to 63 Hz.
Power Consumption – 560 W.
Safety –
UL61010B-1.
CAN/CSA-22.2 No. 1010.1.
EN61010-1/A2 1995.

Electromagnetic Compatibility (EMC) –
Europe:
EN61326 Class A.
EN61000-3-2, EN61000-3-3.
Australia/New Zealand:
AS/NZS 2064.

Computer System and Peripherals
CompactPCI based PC, Celeron 566 MHz CPU, Microsoft Windows 2000 Professional, 128 MB SDRAM, 20 GB Hard Drive, 1.44 MB floppy drive on front panel, CD-ROM in rear panel, included USB compact keyboard and mouse.
PC I/O Ports
USB 1.1 compliant ports (3 total, 1 front, 2 rear), PS/2 mouse and keyboard connectors (rear panel), RJ-45 Ethernet connector (rear panel) supports 10Base-T and 100Base-Tx, VGA Out (rear panel), RS-232C.

Physical Characteristics
Display Characteristics –
LCD color display, 800 (H) x 600 (V) (SVGA).

Mechanical Cooling – Required Clearance.
Top and Bottom – 2 cm.
Side – 15 cm.
Rear – 7.5 cm.

Power Supply
Power Source – 100 to 240 VAC, 47 to 63 Hz.
Power Consumption – 560 W.
Safety –
UL61010B-1.
CAN/CSA-22.2 No. 1010.1.
EN61010-1/A2 1995.

Electromagnetic Compatibility (EMC) –
Europe:
EN61326 Class A.
EN61000-3-2, EN61000-3-3.
Australia/New Zealand:
AS/NZS 2064.
Output Module Characteristics

<table>
<thead>
<tr>
<th>Basic Features</th>
<th>DTGM21</th>
<th>DTGM30</th>
<th>DTGM31</th>
<th>DTGM32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Channels and Connections</td>
<td>4 single-ended (installed in DTG5078) 2 single-ended (DTG5274/DTG5334) 4 SMA connectors</td>
<td>2 complementary channels 4 SMA connectors</td>
<td>1 complementary channel 2 SMA connectors</td>
<td></td>
</tr>
<tr>
<td>Maximum Data Rate (Calculated by Transition Time)</td>
<td>1.1 Gb/s</td>
<td>3.35 Gb/s</td>
<td>350 Mb/s(^*1)</td>
<td></td>
</tr>
<tr>
<td>Normal/Complement (Invert)</td>
<td>Selectable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Impedance</td>
<td>50 Ω/23 Ω (selectable)</td>
<td>50 Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable/Disable</td>
<td>Yes (software switch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Channel Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition Times (20% to 80%) (50 Ω)</td>
<td><340 ps (VOL = 0, VOH = 1) (typical)</td>
<td><95 ps (VOL = 0, VOH = 0.1) (typical)</td>
<td><110 ps (VOL = 0, VOH = 1) (typical)</td>
<td></td>
</tr>
<tr>
<td>Transition Time Control</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting Resolution</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel Output Levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude/Resolution</td>
<td>0.25 to 5.35 V({pk-pk})/5 mV (from 23 Ω source impedance into 50 Ω) 0.25 to 3.9 V({pk-pk})/5 mV (from 50 Ω source impedance into 50 Ω) 0.50 to 7.8 V(_{pk-pk})/5 mV (from 50 Ω source impedance into 1 MΩ)</td>
<td>0.03 to 1.25 V({pk-pk})/5 mV (into 50 Ω)(^*2) 0.06 to 2.5 V({pk-pk})/5 mV (into 1 MΩ)(^*2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Window</td>
<td>–1.65 V to 3.70 V (from 23 Ω source impedance into 50 Ω) –1.2 V to 2.7 V (from 50 Ω source impedance into 50 Ω) –2.4 V to 5.4 V (from 50 Ω source impedance into 1 MΩ)</td>
<td>–2 V to 2.47 V (into 50 Ω)</td>
<td>–2 V to 7 V (into 1 MΩ)</td>
<td></td>
</tr>
<tr>
<td>DC Accuracy</td>
<td>(±3% of the set value) ±50 mV into 50 Ω to GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit setting</td>
<td>High and low level limits can be set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>±80 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overshoot</td>
<td><15% (typical) at High = 1 V, Low = 0 V</td>
<td><10% (typical) at High = 1 V, Low = 0 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Support Native Logic</td>
<td>TTL, CMOS, (P)ECL, LVPECL</td>
<td>LVDS, CMOS, (P)ECL, LVPECL, CML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Jitter Control</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^*1\) minimum pulse width >2.86 ns.
\(^*2\) maximum output amplitude is dependent on output voltage window (offset). (See Figure 1.)
Data Timing Generator

Output Module Characteristics, continued

<table>
<thead>
<tr>
<th>Channel Output Levels</th>
<th>DTGM21</th>
<th>DTGM30</th>
<th>DTGM31</th>
<th>DTGM32</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Jitter Control</td>
<td>1 single-ended channel</td>
<td>2 single-ended channels</td>
<td>2 single-ended channels</td>
<td></td>
</tr>
<tr>
<td>Input Channels and Connectors</td>
<td>1 SMA connector</td>
<td>2 SMA connectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input range</td>
<td>–0.5 V to +0.5 V (typical)</td>
<td>–0.5 V to +0.5 V</td>
<td>–0.5 V to +0.5 V</td>
<td></td>
</tr>
<tr>
<td>Jitter Frequency</td>
<td>DC to 250 MHz(^3)</td>
<td>DC to 50 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter Amplitude</td>
<td>240 pspk-pk for 1 Vpk-pk input at Data rate ≤ 2.7 Gb/s(^4)</td>
<td>Range 1: Up to 1 ns at 1 Vpk-pk</td>
<td>Range 2: Up to 2 ns at 1 Vpk-pk</td>
<td></td>
</tr>
</tbody>
</table>

External Tri-state (Hi Z) Control | Yes (SMB input connector) | No |
Tri-state Enable | Enable: Hi 3.3 V, disable Lo: 0 V | — |
Control Channels | By output module level | — |
Delay Time from Inhibit to Data Output | Active to Inhibit: 13 ns, Inhibit to Active: 12 ns | — |

\(^3\) Up to 400 MHz by overdriving jitter input (max –1 V to +1 Vpk-pk). (See Figure 2.)

\(^4\) Jitter amplitude at data rates > 2.7 Gb/s calculated as \(240 - 61.5 \times (\text{data rate} - 2.7)\) ps pk-pk for 1 Vpk-pk input (see Figure 3).

Figure 1. DTGM30, M31, M32 Output Amplitude vs. Offset.

Figure 2. DTGM31 Jitter Input Frequency Response.

Figure 3. DTGM31 Maximum Jitter Amplitude vs. Data Rate.
Ordering Information

Mainframes

DTG5078
750 Mb/s, 8-slot mainframe.

DTG5274
2.7 Gb/s, 4-slot mainframe.

DTG5334
3.35 Gb/s, 4-slot mainframe.

Mainframes Include:
- Microsoft Windows 2000 Professional operating system recovery disk
- DTG5000 Series application software install disk
- user manual, technical reference, registration card
- accessory pouch, front cover
- compact USB keyboard, USB mouse
- lead set for DC Output, 16-CON, twisted pair, 24 in. (60 cm), 50 Ω SMA terminator (male, DC to 18 GHz), SMA connector cap (10 each with DTG5078, 8 each with DTG5274/DTG5334), power cord, calibration certificate.

Please specify power cord and language option when ordering.

Mainframe Options

Opt. 1R – Rackmount.

International Power Plugs

Opt. A0 – North America power.
Opt. A2 – United Kingdom power.
Opt. A3 – Australia power.
Opt. A5 – Switzerland power.
Opt. A10 – China power.
Opt. A99 – No power cord or AC adapter.

Language Options

Output Modules

DTGM21
4 channels (DTG5078), 2 channels (DTG5274/DTG5334).
- 5.35 Vppk (from 25 Ω to 50 Ω).
- 3.9 Vppk (50 Ω), 7.8 Vppk (1 MΩ).
- Tr/Tf (20% to 80%) <340 ps (1 Vppk, into 50 Ω), fixed.
- External Tri-state (Hi_Z) control function.

DTGM320
2 channels.
- 1.25 Vppk (50 Ω), 2.5 Vppk (1 MΩ).
- Tr/Tf (20% to 80%) <110 ps (1 Vppk, into 50 Ω), fixed.

Cables

<table>
<thead>
<tr>
<th>Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Set for DC Output, 16-CON, Twisted Pair, 24 in. (60 cm)</td>
<td>012-A229-00</td>
</tr>
<tr>
<td>Pin Header Cable, 20 in. (51 cm)</td>
<td>012-1505-00</td>
</tr>
<tr>
<td>Pin Header SMB Cable, 20 in. (51 cm)</td>
<td>012-1503-00</td>
</tr>
<tr>
<td>GPB Cable, Double-shielded, 79 in. (200 cm)</td>
<td>012-0991-00</td>
</tr>
<tr>
<td>Master-Slave Cable Set for Connecting Two Mainframes; Set of 4 SMA Cables, 51 cm, 50 Ω (174-1427-00), and Set of 2 BNC Cables, 46 cm (012-0076-00)</td>
<td>012-A230-00</td>
</tr>
<tr>
<td>Master-Slave Cable Set for Connecting Three Mainframes; Set of 6 SMA Cables, 51 cm, 50 Ω (174-1427-00), and Set of 3 BNC Cables, 46 cm (012-0076-00)</td>
<td>012-A231-00</td>
</tr>
<tr>
<td>BNC Cables 50 Ω</td>
<td></td>
</tr>
<tr>
<td>18 in. (46 cm)</td>
<td>012-0076-00</td>
</tr>
<tr>
<td>24 in. (61 cm)</td>
<td>012-1342-00</td>
</tr>
<tr>
<td>42 in. (107 cm)</td>
<td>012-0057-01</td>
</tr>
<tr>
<td>With Shield, 98 in. (250 cm)</td>
<td>012-1256-00</td>
</tr>
<tr>
<td>SMA Cables 50 Ω</td>
<td></td>
</tr>
<tr>
<td>12 in. (30 cm)</td>
<td>174-1364-00</td>
</tr>
<tr>
<td>20 in. (51 cm)</td>
<td>174-1427-00</td>
</tr>
<tr>
<td>39 in. (100 cm)</td>
<td>174-1341-00</td>
</tr>
<tr>
<td>60 in. (152 cm)</td>
<td>174-1428-00</td>
</tr>
<tr>
<td>Delay SMA Cables 50 Ω</td>
<td></td>
</tr>
<tr>
<td>1 ns (male to female)</td>
<td>015-1019-00</td>
</tr>
<tr>
<td>2 ns</td>
<td>015-0560-00</td>
</tr>
<tr>
<td>2 ns (male to female)</td>
<td>015-1005-00</td>
</tr>
<tr>
<td>5 ns</td>
<td>015-0561-00</td>
</tr>
<tr>
<td>5 ns (male to female)</td>
<td>015-1006-00</td>
</tr>
</tbody>
</table>

Adapters and Connectors

<table>
<thead>
<tr>
<th>Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMB to BNC adapter</td>
<td>015-0671-00</td>
</tr>
<tr>
<td>50 Ω SMA (male) to BNC (female) Adapter</td>
<td>015-0554-00</td>
</tr>
<tr>
<td>50 Ω SMA (female) to BNC (male) Adapter</td>
<td>015-0572-00</td>
</tr>
<tr>
<td>50 Ω N/male to SMA (male) Adapter</td>
<td>015-0369-00</td>
</tr>
<tr>
<td>50 Ω SMA Adapter (male to female), DC to 18 GHz, VSWR: 1.2</td>
<td>015-0549-00</td>
</tr>
<tr>
<td>50 Ω SMA Adapter (slide on type female to male), DC to 18 GHz, VSWR: 1.05 + 0.002F (GHz)</td>
<td>015-0553-00</td>
</tr>
<tr>
<td>50 Ω SMA T-Connector (male to female/female)</td>
<td>015-1016-00</td>
</tr>
<tr>
<td>50 Ω SMA Divider (female/female/female), 6 dB, DC to 18 GHz, VSWR: 1.9</td>
<td>015-0565-00</td>
</tr>
</tbody>
</table>
Data Timing Generator

- DTG5078
- DTG5274
- DTG5334

DTGM31
1 channel.
1.25 V_{pk-pk} (50 Ω), 2.5 V_{pk-pk} (1 MΩ).
Tr/Tf (20% to 80%) <110 ps (1 V_{pk-pk}, into 50 Ω), fixed.
External jitter control input.
Jitter frequency DC – 250 MHz.
Jitter amplitude up to 240 ps.

DTGM32
1 channel.
1.25 V_{pk-pk} (50 Ω), 2.5 V_{pk-pk} (1 MΩ).
Tr/Tf (20% to 80%) <110 ps (1 V_{pk-pk}, into 50 Ω), fixed.
2 ch. external jitter control input.
Jitter frequency DC – 50 MHz.
Jitter amplitude up to 1 ns/2 ns.

Output Modules include: Installation sheet (Japanese/English), SMA connector cap (set of 4 with DTGM21, set of 2 with DTGM30), 50 Ω SMA terminator (DC to 18 GHz) (set of 2 with DTGM30, set of 1 with DTGM31/32), registration card.

Service Options
Opt. C5 – Calibration Service 5 years.

Service Upgrade Kit
To determine if your DTG5334 or DTGM30 requires a service upgrade to meet these specifications, please contact your local Tektronix sales representative or technical support (1-800-833-9200), select Option 3, or e-mail: TechSupport@tektronix.com.

- DTG5334
 Opt. 13 – Enables operation of up to 3.4 Gb/s and total jitter <44 ps up to 3.35 Gb/s, 800 mVpk-pk differential output with DTG5334, requires the order of Option IFC.

- DTGM30
 Opt. 13 – Enables total jitter <44 ps to 3.35 Gb/s, 800 mVpk-pk differential output with DTG5334, requires the order of Option IFC.

Recommended Accessories
Service Manual (English) – Order 071-1285-xx.

Test Adapters
Order 013-A012-50.
HDMI TPA-P Test Adapter Set – HDMI TPA-P TDR, HDMI TPA-P DI (differential), HDMI TPA-P SE (single-ended).
Order 013-A014-50.

Note: These adapters do not include clock recovery circuits.